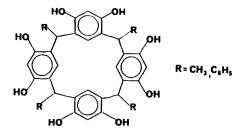
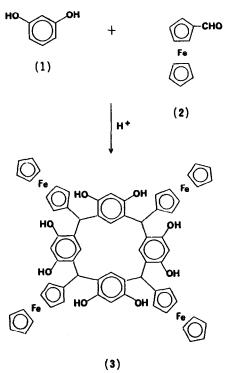
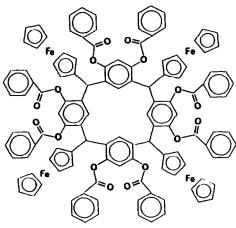
NEW HYDROPHOBIC HOST MOLECULES CONTAINING MULTIPLE REDOX-ACTIVE CENTRES


Paul D. Beer* and E. Louise Tite Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham B15 2TT.

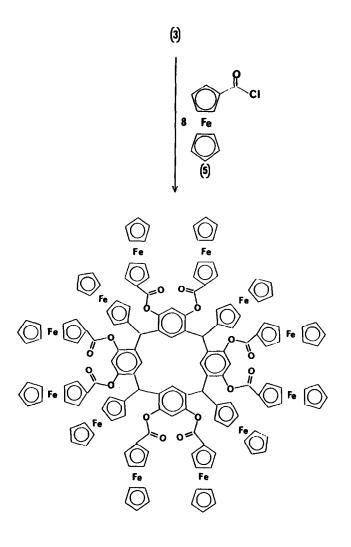
Abstract

The synthesis of two novel macrocyclic hydrophobic host molecules (4) and (6) containing respectively four and twelve ferrocene redox-active centres is described.


Although there is considerable current interest in the design and synthesis of receptor molecules containing a redox-active centre in close proximity to a crown ether¹⁻³ or cryptand⁴ coordination site, few examples of the incorporation of redox centres into hydrophobic host molecules have been reported.⁵⁻⁷ Interest in these latter molecules stems from the idea of investigating the potential catalytic interactions between the redox-active moiety and an included organic guest substrate. This paper reports the preparation of a new redox-active hydrophobic host molecule (4) that contains four ferrocenyl groups and a novel twelve ferrocenyl group containing analogue (6).


It is well known that reactions of resorcinol with aldehydes under acidic conditions can lead to macrocyclic products of type $I.^{8,9}$ A simple adaptation of this methodology by using a metallocenecarboxaldehyde leads to

(1)


respective two step preparations of (4) and (6). The reaction of ferrocenecarboxaldehyde (1) and resorcinol (2) in the presence of hydrochloric acid and ethanol gave initially a black precipitate, insoluble in all common organic solvents tentatively assigned as the phenolic macrocycle (3). Subsequent benzoylation of a suspension of (3) in dry tetrahydrofuran followed by column chromatographic separation gave (4) as an orange crystalline solid, m.p. >250 (10% overall yield for the two steps).

(4)

An analogous procedure using ferrocenecarbonyl chloride (5) gave (6) as an orange-red crystalline solid m.p. >250°C (10% overall yield).

(6)

Elemental analyses, mass spectrometry [(4) m/z = 2057, (6) m/z 2921] and ¹H and ¹³C n.m.r. spectroscopy confirmed the proposed structures.^{10,11} It is noteworthy that the ¹H n.m.r. spectrum of (4) in CDCl₃ at ambient temperature reveals two types of ferrocene groups suggesting the solution structure of (4) possesses a C₂ axis of symmetry.^{10,11} Preliminary electrochemical experiments (acetonitrile, S.C.E.) on (4) shows two, two electron reversible oxidation waves at +0.575 V and +0.665 V corresponding to the oxidation of the respective four ferrocenyl moleties.

These interesting electrochemical observations indicate the future possibility for preparing mixed-valence species which may exhibit exciting new electronic, optical, catalytic and physical properties.

Acknowledgements

We thank the SERC for a CASE award to E.L.T., for use of the high field n.m.r. service at the University of Warwick and The Research Corporation Trust, L and D Blond for additional financial support.

References

- (a) P.D. Beer, J. Chem. Soc. Chem. Commun. 1985, 1115. (b) T. Saji, Chem. Lett. 1986, 275. (c) B. Czech and A. Ratajczak, Pol. J. Chem. 1980, <u>54</u>, 767. (d) P.D. Beer and A.D. Keefe, J. Organometal. Chem. 1986, <u>306</u>, C10. (e) S. Akabori, Y. Habata, Y. Sakamoto, M. Sato and S. Ebine, Bull. Soc. Jpn. 1983, <u>56</u>, 537.
- R.E. Wolf and S.R. Cooper, J. Am. Chem. Soc. 1984, <u>106</u>, 4646. (b) L. Echegoyen, D.A. Gustowski, Soc. Chem. Commun. 1986, 220. (c) K. Maruyama, H. Sohmiya and H. Tsukube, J. Chem. Soc. Perkin Trans 1 1986, 2069. (d) F. Dietl, G. Giener and A. Merz, Synthesis 1986, 626.
- A. Kaifer, D.A. Gustowski, L. Echegoyen, V.J. Gatto, R.A. Schultz, T.P. Cleary, C.R. Morgan, D.M. Goli, A.M. Rios and C.W. Gokel, J. Am. Chem. Soc. 1985, <u>107</u>, 1958.
- (a) P.D. Beer, A.D. Keefe, C.G. Crane, A.R. Whyman, J. Organometal. Chem. 1986, <u>314</u>, C9. (b)
 P.D. Beer, C.D. Bush and T.A. Hamor, J. Organometal. Chem. 1988, <u>339</u>, 133.
- 5. A. Veno, F. Monivaki, T. Osa, F. Hamadal and K. Murai, Chem. Pharm. Bull. 1986, 34, 438.
- 6. I. Tabushi, N. Shimizu, K. Yamamura, J. Am. Chem. Soc. 1977, 99, 7100.
- 7. P.D. Beer, A.D. Keefe, J. Inclusion Phenom. 1987, 5, 499.
- 8. A.G.S. Högberg, J. Org. Chem. 1980, 45, 4498.
- 9. A.G.S. Högberg, J. Am. Chem. Soc. 1980, 102, 6046.
- The result of a single crystal X-ray analysis of (4) is in accordance with the proposed structure.
 P.D. Beer, E.L. Tite, A.M.Z. Slawin and D.J. Williams, to be reported elsewhere.
- 11. 'H NMR (CDCl₃) for (4) 3.93 (24H, \underline{s}), 4.05 (4H \underline{s}), 4.12 (4H \underline{s}), 4.23 (4H, \underline{s}), 5.65 (4H, s), 6.64 (2H, s), 6.73 (2H, s), 6.75 (2H, s), 7.20-7.25 (8H, m), 7.42-7.58 (16H m), 7.82-7.99 (16H, m). P (C = 0) KBr disc = 1735 cm⁻¹.

C₁₂₄H₈₈O₁₆Fe₄ requires C, 72.4, H 4.3

found C, 72.3, H 4.5

(Received in UK 23 March 1988)